Forum

Aumentare la massa ...
 
Notifiche
Cancella tutti

Aumentare la massa muscolare in low carb

80 Post
10 Utenti
0 Likes
56 K Visualizzazioni
(@andrea)
Membro
Registrato: 13 anni fa
Post: 708
Topic starter  

ma se le patate le mette anche cordian nel libro "paleodieta per atleti"..scusa ma queste forme di ortoressia non si possono sentire..se si fa sport pesante si deve trovare un compromesso..poi neanche fossero veleno le patate


   
RispondiCitazione
Tropico
(@tropico)
Membro Admin
Registrato: 13 anni fa
Post: 9900
 

Ti (purtroppo) rettifico, Cordain ha ultimamente rilasciato articoli in cui diceva di evitare le patate,come anche l'albume di uova...e fra poco chissà cos'altro.
Quanto basta,per me, per allontanarmi dalla sua visione paleolitica.
Si è fissato sui singoli componenti.
Sta formando più ortoressici Cordain che Ehret fra un pò
Quando ci si affida a terzi indistintamente si può divenire vittima di schemi mentali rigidi.

Consumption of Nightshade Plants (Part 1) - by Loren Cordain, Ph.D., Professor

Editor's note: Dr. Cordain's latest paper on paleo nutrition discusses the consumption of the nightshade family of plants (potatoes, tomatoes, and chili peppers). We will publish this paper in three parts over the next three weeks in the free weekly edition of The Paleo Diet Update, in addition to making the inividual papers available for purchase in our web store the following week for a limited time. Afterwards, this paper will be available in its entirety from our web store.

Consumption of Nightshade Plants, Human Health and Autoimmune Disease

Previously, I have not specifically commented about the nightshade family of plants in any of my three books, however I have written a brief paper (Tomatoes, Vaccines and Autoimmune Disease) demonstrating a possible link between tomato consumption and autoimmune disease, which is available for purchase in our web store.

Nightshade is the common name for flowering plants belonging to the botanical family Solanaceae, which contain more than 75 genera and 2,000 species1. Some notorious non-edible nightshades include tobacco, petunias, jimson weed, mandrake, and deadly nightshade. The family comprises well known food plants such as potatoes, tomatoes, green peppers, chili peppers, eggplants and tomatillos. Note that chili peppers include all varieties of peppers from the genus Capsicum, including bell peppers, jalapeno, wax, cayenne, habanero, Anaheim, Thai, Tabasco, cherry, pepperoncini and Serrano among others. Chili peppers are commonly consumed as dried powders such as paprika, chili powder and cayenne, and are near universal ingredients in hot sauces, Tabasco sauces, and salsas. Some more obscure edible plants from the Solanaceae family are listed below in Table 1.

Table 1. Some obscure and infrequently consumed edible plant foods within the Solanaceae family (adapted from: United States Department of Agriculture, Agricultural Research Service, Beltsville Area, Germplasm Resources Information Network (GRIN). http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl

Common name or names Scientific name
Tamarillo, Tree tomato, Terong belanda Cyphomandra betacea
Goji Berry, Wolfberry Lycium barbarum
Purple ground cherry, Chinese lantern Quincula lobata
Chinese lantern, Winter cherry, Bladder cherry, Strawberry cherry Physalis alkekengi
Cut leaf ground cherry Physalis angulata
Hairy ground-cherry, Dwarf cape gooseberry Physalis grisea
Cape gooseberries, Golden berry, Husk cherry, Peruvian ground cherry, Poha berry, Giallo grosso Physalis peruviana
Tomatillo, husk tomato Physalis philadelphica (formerly Physalis ixocarpa)
Husk tomato, Strawberry tomato, Ground cherry Physalis pubescens
Sticky gooseberry, Sticky Physalis Physalis viscose
Gilo, Kumpa, Scarlet eggplant Solanum aethiopicum
American nightshade, Black nightshade Solanum americanum
Tzimbalo Solanum caripense
Kangaroo apple Solanum laciniatum
Indian nightshade Solanum lasiocarpum
Garden huckleberry Solanum melanocerasum
Pepino melon Solanum muricatum
Lulo, Naranjilla Solanum quitoense
Cocona, Orinoco-apple, Peach-tomato Solanum sessiliflorum
Wonderberry, Sunberry Solanum retroflexum (formerly Solanum X burbankii)
Ashwagandha, Withania, Winter cherry, Indian winter cherry, Indian ginseng Withania somnifera
Table 2 below shows the recent per capita consumption of commonly eaten nightshades. Potatoes come in first (126 lbs) followed by tomatoes (85.7 lbs, including both fresh and processed), peppers (15.5 lbs) and eggplant (0.8 lbs). These figures clearly show that nightshades are a staple food, universally consumed in the U.S. diet. This raises the question: Are there any health hazards associated with eating almost 230 pounds of nightshades on a yearly basis?

Table 2. U.S. per capita nightshade consumption. Data from USDA Economic Research Service2.

Item Pounds Year
Potatoes (total) 126.0 2007
Frozen 53.0 2007
Fresh 44.0 2007
Chips 16.0 2007
Dehydrated 13.0 2007
Fresh Tomatoes 18.5 2008
Processed Tomatoes (total) 67.2 2008
Tomato sauces 23.5 2008
Tomato paste 12.1 2008
Canned whole tomatoes 11.4 2008
Catsup 10.1 2008
Tomato juice 10.1 2008
Bell peppers 9.1 2008
Chili peppers 6.4 2008
Eggplant 0.8 2008
Total 228.0 2008
Potatoes

Let’s first examine potatoes. Potatoes generally maintain one of the highest glycemic index and load values of any food3-6. Regular consumption of high glycemic index carbohydrates may promote obesity and diseases of insulin resistance, including type 2 diabetes, cardiovascular disease, abnormal blood lipids, gout, acne, polycystic ovary syndrome, epithelial cell cancers (breast, colon and prostate), acanthosis nigricans (a skin disease), and male vertex balding7. Consequently in both of my books I do not recommend that potatoes be included as a regular component of Paleo Diets. Additionally, as you can see from Table 1, most of the potatoes consumed in the U.S. are highly processed in the form of french fries, mashed potatoes, dehydrated potato products, and potato chips. Processed potato foods typically are made with multiple additives (salt, vegetable oils, trans fats, refined sugars, dairy products, cereal grains, preservatives, and other food additives) that may adversely affect health in a variety of ways.

An additional nutritional property of potatoes that is rarely considered in regard to human health is their saponin content. Saponins derive their name from their ability to form "soap" like foams when mixed with water. Chemically, saponins are classified as either steroid glycosides or triterpenoid glycosides. A glycoside is any of a group of organic compounds occurring abundantly in plants that yield a sugar and one or more non-sugar substances upon hydrolysis (chemical decomposition in which a compound is split into other compounds by reacting with water). Steroid glycosides are commonly called glycoalkaloids.

Both categories of saponins are widely distributed throughout the plant kingdom including many cultivated crops. The primary function of saponins is to protect the plant from microbial and insect attack by dissolving cell membranes of these potential predators8. In mammals, including humans who consume saponin containing plants, these substances frequently create pores in the gut lining, thereby increasing intestinal permeability8-10. If they enter the bloodstream in sufficient concentrations, they cause hemolysis (destruction of the cell membrane) of red blood cells8-10.

Figure 1 shows how saponins disrupt cell membranes which may lead to a leaky gut. Saponins first bind cholesterol molecules in intestinal cell membranes due to the affinity of a saponin component (the aglycone moiety) for the membrane sterol (cholesterol)9. In the series of steps that follows, you can see how saponins cause portions of the cell membrane to buckle and eventually break free, forming a pore or a hole in the membrane.

Figure 1. The proposed mechanism by which dietary saponins may elicit pores in intestinal cells leading to a "leaky gut" (adapted from 9).

Potatoes contain two glycoalkaloid saponins: α-chaconine and α-solanine which may adversely affect intestinal permeability and aggravate inflammatory bowel disease11, 12. Even in normal healthy adults, a meal of mashed potatoes results in the rapid appearance of both α-chaconine and α-solanine in the bloodstream13. The toxicity of these two glycoalkaloids is dose dependent – meaning that the greater the concentration in the bloodstream, the greater is their toxic effect. At least 12 separate cases of human poisoning from potato consumption, involving nearly 2000 people and 30 fatalities have been recorded10. Potato saponins can be lethally toxic once in the bloodstream in sufficient concentrations because these glycoalkaloids inhibit a key enzyme (acetyl cholinesterase) required for the synthesis of acetylcholine, a neurotransmitter required for nerve impulse conduction10. The concentration of both α-chaconine and α-solanine in a variety of potato foods are listed in Table 3. Note that the highest concentrations of these toxic glycoalkaloids appear in potato foods containing the skins.

Table 3. Concentrations (mg/kg) of total glycoalkaloids (α-chaconine + α-solanine) in a variety of potato foods (adapted from 10).

Food Item α-chaconine + α-solanine (mg/kg)
Fried skins 567-1450
Chips with skins 95 - 720
Chips (US potatoes) 23 - 180
Frozen baked potatoes 80 - 123
Frozen skins 65 - 121
Baked potato w/jacket 99 - 113
Dehydrated potato flour 65 - 75
Boiled peeled potato 27 - 42
Canned whole new potatoes 24 - 34
Frozen fried potato 4 - 31
Frozen French fries 2 - 29
Dehydrated potato flakes 15 - 23
French fries 0.4 - 8
Frozen mashed potatoes 2 - 5
Canned peeled potato 1 - 2
So the next logical question arises: Should we be eating a food that contains two known toxins which rapidly enter the bloodstream, increase intestinal permeability and potentially impair the nervous system?

In the opinion of these authors: ". . . if the potato were to be introduced today as a novel food it is likely that its use would not be approved because of the presence of these toxic compounds." 11

Other researchers state: "Available information suggest that the susceptibility of humans to glycoalkaloids poisoning is both high and very variable: oral doses in the range 1 - 5 mg/kg body weight are marginally to severely toxic to humans whereas 3 - 6 mg/kg body weight can be lethal. The narrow margin between toxicity and lethality is obviously of concern. Although serious glycoalkaloid poisoning of humans is rare, there is a widely held suspicion that mild poisoning is more prevalent than supposed." 10

The commonly accepted safe limit for total (α-chaconine + α-solanine) in potato foods is 200 mg/kg, a level proposed more than 70 years ago, whereas more recent evidence suggests this level should be lowered to 60 – 70 mg/kg10. If you take a look at Table 2 you can see that many potato food products exceed this recommendation.

I believe that far more troubling than the potential toxicity of potato glycoalkaloids is their potential to increase intestinal permeability over the course of a lifetime, most particularly in people with diseases of chronic inflammation (cancer, autoimmune disease, cardiovascular disease and diseases of insulin resistance). A leaky gut has been recently proposed to be a universal initiating trigger for autoimmune diseases14 – a conclusion that I agree with15, as well as promoting cardiovascular disease16, 17 and diseases of insulin resistance18. When the gut becomes "leaky" it is not a good thing, as the intestinal contents may then have access to the immune system which in turn becomes activated thereby causing a chronic low level systemic inflammation known as endotoxemia16 – 18. In particular a component of the cell walls of gut gram negative bacteria called lipopolysaccharide (LPS) is highly inflammatory. Any LPS which gets past the gut barrier is immediately engulfed by two types of immune system cells (macrophages and dendritic cells). Once engulfed by these immune cells, LPS binds to a receptor (toll-like receptor-4) on these cells causing a cascade of effects leading to increases in blood concentrations of pro-inflammatory cytokines (localized hormones) including interferon gamma (INF-γ),interleukin 1 (IL-1), IL-6, IL-8 and tumor necrosis factor alpha (TNF-α)16, 19. Two recent human studies have shown that high potato diets increase the blood inflammatory marker IL-620, 21. Without chronic low level systemic inflammation, it is unlikely that few of the classic diseases of civilization (cancer, cardiovascular disease, autoimmune diseases and diseases of insulin resistance) would have an opportunity to take hold and wreak their fatal effects.

A final note on potatoes – to add insult to injury, this commonly consumed food is a major source of dietary lectins. On average potatoes contain 65 mg of potato lectin per kilogram. As is the case with most lectins, they have been poorly studied in humans, so we really don’t have conclusive information how potato lectin may impact human health. However, preliminary tissue studies indicate that potato lectin resists degradation by gut enzymes, bypasses the cell wall barriers and can then bind various tissues22, 23. Potato lectins have been found to irritate the immune system and produce symptoms of food hypersensitivity in allergenic and non-allergenic patients24. Just say "no" to potatoes!!

Next week we will publish part 2 of this article: Tomatoes.

References:

Heiser CB. Nightshades, the Paradoxical Plants. W.H. Freeman and Company, San Francisco, CA, 1969.
USDA, Economic Research Service. http://www.ers.usda.gov/
Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002 Jul;76(1):5-56.
Leeman M, Ostman E, Björck I. Glycaemic and satiating properties of potato products. Eur J Clin Nutr. 2008 Jan;62(1):87-95.
Fernandes G, Velangi A, Wolever TM. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005 Apr;105(4):557-62.
Henry CJ, Lightowler HJ, Strik CM, Storey M. Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr. 2005 Dec;94(6):917-21.
Cordain L, Eades MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comp Biochem Physiol A Mol Integr Physiol. 2003 Sep;136(1):95-112.
Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002 Dec;88(6):587-605.
Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B.. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995;1240: 216-228.
Smith DB, Roddick JG, Jones JL. Potato glycoalkaloids: some unanswered questions. Trends in Food Sci Technol 1996;7:126-131.
Patel B, Schutte R, Sporns P, Doyle J, Jewel L, Fedorak RN. Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. Inflamm Bowel Dis. 2002 Sep;8(5):340-6.
Iablokov V, Sydora BC, Foshaug R, Meddings J, Driedger D, Churchill T, Fedorak RN. Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease. Dig Dis Sci. 2010 Mar 3. [Epub ahead of print]
Hellenäs KE, Nyman A, Slanina P, Lööf L, Gabrielsson J. Determination of potato glycoalkaloids and their aglycone in blood serum by high-performance liquid chromatography. Application to pharmacokinetic studies in humans. J Chromatogr. 1992 Jan 3;573(1):69-78.
Fasano A. Surprises from celiac disease. Sci Am. 2009 Aug;301(2):54-61.
Cordain L, Toohey L, Smith MJ, Hickey MS. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br J Nutr. 2000 Mar;83(3):207-17.
Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des. 2006;12(32):4229-45.
Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet. 2000 Sep 9;356(9233):930-3.
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761-72.
Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol 1996;60: 8-26.
Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H, Uusitupa M, Poutanen K, Niskanen L. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr. 2008 May;87(5):1497-503.
Naruszewicz M, Zapolska-Downar D, Kośmider A, Nowicka G, Kozłowska-Wojciechowska M, Vikström AS, Törnqvist M. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009 Mar;89(3):773-7.
Gabor F, Stangl M, Wirth M. Lectin-mediated bioadhesion: binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8. J Control Release. 1998 Nov 13;55(2-3):131-42.
Qaddoumi M, Lee VH. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res. 2004 Jul;21(7):1160-6.
Pramod SN, Venkatesh YP, Mahesh PA. Potato lectin activates basophils and mast cells of atopic subjects by its interaction with core chitobiose of cell-bound non-specific immunoglobulin E. Clin Exp Immunol. 2007 Jun;148(3):391-401.

Consumption of Nightshade Plants (Part 2) - by Loren Cordain, Ph.D., Professor

Editor's note: Dr. Cordain latest paper on paleo nutrition discusses the consumption of the nightshade family of plants (potatoes, tomatoes, and chili peppers). We will publish this paper in three parts in the free weekly edition of The Paleo Diet Update, in addition to making the newsletters available for purchase in our web store the following week for a limited time. Afterwards, this paper will be available in its entirety from our web store. If you were not a subscriber for last week’s installment of the paper you may purchase last week’s edition from our web store. Note that the numbering of figures, tables and references in this week's installment reflect the paper in its entirety.

Consumption of Nightshade Plants, Human Health and Autoimmune Disease
Part 2: Tomatoes

In addition to potatoes, tomatoes represent another nightshade which increases intestinal permeability25. The primary tomato saponin which causes a leaky gut is the glycoalkaloid, α-tomatine. Table 4 below shows the concentration of α-tomatine in a variety of tomatoes and tomato food products. Note that smaller and unripe tomatoes have noticeably increased concentrations of α-tomatine, whereas this compound is barely detectable in a standard ripe, red tomato. In contrast, ketchup, green salsa, pickled green tomatoes and cherry tomatoes are all concentrated sources of α-tomatine. Although tomatoes typically maintain lower concentrations of glycoalkaloids than potatoes, they are more potent than potatoes in disrupting the intestinal membrane and promoting a "leaky gut"27.

Table 4. α-tomatine concentrations (mg/kg) in tomatoes and tomato food products. Adapted from reference 26.

Type of Tomato or Tomato Product α-tomatine concentration (mg/kg)
1. Unripe, small immature green 548.0
2. Unripe medium immature green 169.0
3. Pickled green tomatoes (Brand A) 71.5
4. Unripe pickled green 28.0
5. Pickled green tomatoes (Brand B) 28.0
6. Green salsa 27.5
7. Sundried red tomatoes 21.0
8. Unripe green large 16.0
9. Unripe large immature green 10.0
10. Sungold cherry tomatoes 11.0
11. Fried Green tomatoes 11.0
12. Microwaved green tomatoes 11.0
13. Yellow cherry tomatoes 9.7
14. Ketchup 8.6
15. Red Sauce 5.7
16. Yellow pear cherry tomatoes 4.5
17. Tomato juice 2.8
18. Red cherry tomatoes 2.7
19. Condensed tomato soup 2.2
20. Red pear cherry tomatoes 1.3
21. Medium yellow tomatoes 1.3
22. Large yellow tomatoes 1.1
23. Stewed canned tomatoes 1.1
24. Ripe red beefsteak tomato 0.9
25. Green zebra tomatoes 0.6
26. Roma 0.4
27. Standard red ripe tomato 0.3
In addition to α-tomatine, tomatoes contain another anti-nutrient called tomato lectin (TL) which rapidly crosses the gut barrier and enters into the bloodstream in humans28. The concentration of TL in tomatoes and tomato products is between 3.0 – 6.0 mg/kg29. More recently, TL has been employed by the pharmaceutical industry to experimentally deliver large molecular weight drugs across the gut barrier30, 31. The simultaneous presence of a saponin and a lectin capable of binding gut tissue has an additive effect upon intestinal permeability32. Hence, certain tomatoes and tomato food products contain both saponins and a lectin which compromise intestinal function and promote a "leaky gut." No dietary interventions have ever been carried out in living humans to determine if tomato or potato consumption may adversely affect the immune system and promote inflammation, autoimmune disease and other chronic inflammatory diseases.

Tomatoes and Autoimmune Diseases

Having said this, a convincing body of literature from animal studies shows that α-tomatine is a powerful stimulator of the immune response – so much so that it is employed in vaccines as an adjuvant. Any substance which increases the potency of a vaccine is called an adjuvant. Autoimmune diseases and vaccines have numerous immunological similarities: vaccines "pre-program" the immune system using elements within the vaccine to attack a foreign invader; whereas autoimmune diseases result in the immune system attacking one or more of the body’s own tissues.

Before I can address how tomatoes may be involved with autoimmune diseases, I’ve got to briefly explain how vaccines and adjuvants work. The immune response is normally a healthy reaction because it allows our bodies to detect foreign antigens (proteins) derived from invading microbes and take appropriate steps via the immune system to destroy these organisms. Medicine has taken advantage of this naturally occurring response and has utilized it to prevent diseases in the form of vaccines. With a typical vaccine, dead or weakened microorganisms are injected into the body with a hypodermic needle and syringe. The immune system then recognizes the vaccine antigens as foreign and destroys them, and in the process learns to "remember" them. When the "real" (virulent) version of the vaccine antigen appears, the immune system recognizes the invading microbe and destroys it thereby preventing the disease. With an autoimmune disease, it is as if this very same process occurs, except that the immune response is directed at one or more of the body’s own tissues or organs.

When immunologists first began to manufacture vaccines they realized that many vaccines simply didn’t work with weakened viruses or bacteria alone. They simply didn’t "rev" up the immune system sufficiently to result in a full blown immune response. It was eventually discovered that by mixing weakened or dead microbes with another compound called an adjuvant the effectiveness of the vaccine was increased and full immunity could be established. The three most commonly used adjuvants are 1) alum (aluminum hydroxide), 2) Freund’s adjuvant (an antigen solution emulsified in mineral oil, used as an immunopotentiator or compound that boosts the immune system) and 3) Incomplete Freund’s adjuvant (the same adjuvant, but without the mycobacterial components). Of these three, only alum is licensed for human use; the other two are used primarily in animals.

So from what I’ve explained, you might expect it possible for scientists to cause autoimmune diseases by creating vaccines containing some of the body’s own tissues (antigens). Clearly, it would be unethical to deliberately cause an autoimmune disease in humans, but experiments in animals confirm that organ specific autoimmune diseases can be caused by injecting a self-antigen with a powerful adjuvant such as Freund’s33, 34. Neither the adjuvant alone nor the self-antigen typically results in autoimmunity in animals33-35. Now the question arises, is it possible that we can unknowingly be exposed to "natural" vaccines (containing pathogens plus adjuvants) that trick our immune systems into developing immunity against our own tissues?

As immunologists further developed vaccines, instead of injecting the foreign antigen with a hypodermic needle through the skin, they attempted to initiate an immune response by having subjects swallow a capsule containing the foreign antigen. Invariably, these experiments failed because dendritic cells in the gut which normally process foreign antigens did not elicit an immune response, but rather were nonreactive. This nonreactive state by dendritic cells is actually the normal or default response called oral tolerance, and prevents immune responses to non-harmful dietary and microbial antigens. Immunologists discovered that if they administered the foreign antigen containing capsule along with an adjuvant, they could now prevent oral tolerance by dendritic cells and cause a full blown immune response36-38. So if a gut borne antigen is simultaneously present with a gut borne adjuvant, the stage is set for promoting an immune response that may lead to an autoimmune disease if molecular mimicry exists between the gut borne antigen and one of the body’s own tissues.

Of the common autoimmune diseases (Table 5), infectious agents such as viruses and bacteria are thought to be the most likely environmental trigger39. How viruses and bacteria ultimately set off an autoimmune response is not completely understood, but many scientists40-42 (including me15) believe it is through a process called molecular mimicry whereby amino acid sequences from viruses and bacteria resemble amino acid sequences in our body’s organs and tissues (see Figure 2 below). This similarity in molecular structure between infectious agents and our body’s own tissues sometimes confuses certain components of the immune system causing "self tolerance" to break down, thereby resulting in the destruction of tissues and organs by the immune system.

Table 5. Common autoimmune diseases.

Disease Tissue/Organ Affected Prevalence
Alopecia areata Hair follicle 170 per 100,000
Ankylosing spondylitis Spine and sacroiliac joints 129 per 100,000
Autoimmune urticaria Skin 330 per 100,000
Celiac disease Small intestine 400 per 100,000
Crohn's disease Gastrointestinal tract 184 per 100,000
Diabetes (type 1) Pancreas 120 per 100,000
Graves' disease Thyroid gland 1,120 per 100,000
Hashimoto's thyroiditis Thyroid gland 9,460 per 100,000
Lupus erythematosis Any tissue in the body 510 per 100,000
Multiple sclerosis Central nervous system 140 per 100,000
Psoriasis Skin 2,020 per 100,000
Rheumatoid arthritis Joints 920 per 100,000
Scleroderma Skin, many other organs 110 per 100,000
Sjögren's syndrome Salivary and tear glands 370 per 100,000
Ulcerative colitis Colon 35-100 per 100,000
Uveitis Anterior eye 850 per 100,000
Vitiligo Skin 740 per 100,000
Exposure to viruses, bacteria and other microbes most typically occurs in a number of ways: 1) the microbe may enter your body through mucous membranes in your nose, mouth or gastrointestinal or genitourinary tracts, or 2) it enters your body through a break in your skin caused by a wound or insect/vector bite. On a daily basis, we are regularly exposed to microbes via all of these pathways, however far and away the greatest regular exposure to microbes comes from viruses and bacteria that reside in our intestines43. In healthy people the gut tissue represents a powerful barrier that prevents microorganisms within the gut from entering the bloodstream. Additionally, certain components of the immune system and the liver act to prevent proteins (antigens) from gut microbes from entering circulation. However, under certain circumstances gut permeability may increase thereby facilitating the first step for entry of microbe antigens and food antigens into circulation14, 15.

Figure 2. Schematic representation of the molecular mimicry process.

An emerging consensus among scientists who study autoimmune disease is that a number of autoimmune diseases (including type 1 diabetes, Crohn’s disease, dermatitis herpetiformis, rheumatoid arthritis, celiac disease, and ankylosing spondylitis) have an environmental trigger that originates from a leaky gut, thereby allowing microbe and food antigens continual access to the immune system14, 15, 44, 45.

As I have previously outlined, tomatoes contain two antinutrients (tomato lectin and α-tomatine) which increase intestinal permeability. Additionally, both of these compounds may simultaneously bind the cell walls of various gut bacteria, viruses and partially digested bacteria/viruses thereby forming complexes containing: 1. tomato lectin + viral or bacterial antigen46, 47 and/or 2. α-tomatine + viral or bacterial antigen. In other words, both tomato lectin and α-tomatine may act as a "Trojan Horse," thereby causing the intestines to become leaky while simultaneously binding to and pulling bacterial and viral antigens past the gut barrier. A healthy immune system response to these foreign antigens is "oral tolerance" (ignoring) of these gut borne invaders. However if an adjuvant is simultaneously present with these bacterial or viral antigens, then a full blown immune response can occur. Well you guessed it, α-tomatine not only increases intestinal permeability but also is a powerful immunological adjuvant48-54 used in the manufacture of vaccines. Similarly, tomato lectin acts as a potent adjuvant46.

In the wild world of the internet and elsewhere, urban legend has it that consumption of nightshade (tomato, potato, eggplant, bell peppers, hot peppers, and paprika) free diets may improve symptoms in some rheumatoid arthritis patients55, 56. Is there any scientific basis for these alleged anecdotal observations? Indeed, in theory a growing body of scientific studies points toward the use of nightshade-free diets in the treatment of rheumatoid arthritis and other autoimmune diseases. To date, no animal or human experiments have been conducted that confirm or deny this hypothetical evidence. As has been my policy in the past, I believe that anyone suffering from an autoimmune disease should remove suspect foods from the diet for an extended period and then monitor symptoms. If conditions get worse after you re-introduce the food, then this particular food may be problematic for you and should not be part of your lifelong diet.

Because the effects of saponins on membrane function and intestinal permeability are dose dependent25, 27, then the more saponins you consume the greater the potential for your gut to become leaky. To date, little is known about the dietary threshold concentrations of saponins required to elicit a leaky gut in humans and its associated adverse health effects. My recommendation for healthy people would be to avoid potatoes for all of the reasons I have previously listed (see last week’s newsletter for part 1 of this paper and the discussion of potatoes). However, because ripe red tomatoes have such low concentrations of α-tomatine, and because they are rich sources of vitamins, minerals and other healthful nutrients, only people with an autoimmune disease or allergies should consider limiting their fresh ripe tomato intake.

Next week we will publish part 3 of this article: Chili Peppers.

References:

Heiser CB. Nightshades, the Paradoxical Plants. W.H. Freeman and Company, San Francisco, CA, 1969.
USDA, Economic Research Service. http://www.ers.usda.gov/
Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002 Jul;76(1):5-56.
Leeman M, Ostman E, Björck I. Glycaemic and satiating properties of potato products. Eur J Clin Nutr. 2008 Jan;62(1):87-95.
Fernandes G, Velangi A, Wolever TM. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005 Apr;105(4):557-62.
Henry CJ, Lightowler HJ, Strik CM, Storey M. Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr. 2005 Dec;94(6):917-21.
Cordain L, Eades MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comp Biochem Physiol A Mol Integr Physiol. 2003 Sep;136(1):95-112.
Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002 Dec;88(6):587-605.
Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B.. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995;1240: 216-228.
Smith DB, Roddick JG, Jones JL. Potato glycoalkaloids: some unanswered questions. Trends in Food Sci Technol 1996;7:126-131.
Patel B, Schutte R, Sporns P, Doyle J, Jewel L, Fedorak RN. Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. Inflamm Bowel Dis. 2002 Sep;8(5):340-6.
Iablokov V, Sydora BC, Foshaug R, Meddings J, Driedger D, Churchill T, Fedorak RN. Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease. Dig Dis Sci. 2010 Mar 3. [Epub ahead of print]
Hellenäs KE, Nyman A, Slanina P, Lööf L, Gabrielsson J. Determination of potato glycoalkaloids and their aglycone in blood serum by high-performance liquid chromatography. Application to pharmacokinetic studies in humans. J Chromatogr. 1992 Jan 3;573(1):69-78.
Fasano A. Surprises from celiac disease. Sci Am. 2009 Aug;301(2):54-61.
Cordain L, Toohey L, Smith MJ, Hickey MS. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br J Nutr. 2000 Mar;83(3):207-17.
Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des. 2006;12(32):4229-45.
Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet. 2000 Sep 9;356(9233):930-3.
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761-72.
Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol 1996;60: 8-26.
Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H, Uusitupa M, Poutanen K, Niskanen L. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr. 2008 May;87(5):1497-503.
Naruszewicz M, Zapolska-Downar D, Kośmider A, Nowicka G, Kozłowska-Wojciechowska M, Vikström AS, Törnqvist M. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009 Mar;89(3):773-7.
Gabor F, Stangl M, Wirth M. Lectin-mediated bioadhesion: binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8. J Control Release. 1998 Nov 13;55(2-3):131-42.
Qaddoumi M, Lee VH. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res. 2004 Jul;21(7):1160-6.
Pramod SN, Venkatesh YP, Mahesh PA. Potato lectin activates basophils and mast cells of atopic subjects by its interaction with core chitobiose of cell-bound non-specific immunoglobulin E. Clin Exp Immunol. 2007 Jun;148(3):391-401.
Johnson IT, Gee JM, Price K, Curl C, Fenwick GR. Influence of saponins on gut permeability and active nutrient transport in vitro. J Nutr. 1986 Nov;116(11):2270-7.
Friedman M, Levin CE. Alpha tomatine content in tomato and tomato products determined by HPLC with pulsed amperometric detection. J Agric Food Chem 1995;43:1507-1511.
Gee JM, Wortley GM, Johnson It, Price KR, Rutten AA. Houben GF, Penninks, AJ. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations. Toxicol in Vitro 1996;10:117-128.
Kilpatrick DC, Pusztai A, Grant G, Graham C, Ewen SW. Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 1985 Jun 17;185(2):299-305.
Nachbar MS, Oppenheim JD, Thomas JO. Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomoto (Lycopersicon esculentum). J Biol Chem 1980;2056-2061.
Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004 Mar 3;56(4):425-35.
Carreno-Gómez B, Woodley JF, Florence AT. Studies on the uptake of tomato lectin nanoparticles in everted gut sacs. Int J Pharm. 1999 Jun 10;183(1):7-11.
Alvarez JR, Torres-Pinedo R. Interactions of soybean lectin, soyasaponins, and glycinin with rabbit jejunal mucosa in vitro. Pediatr Res 1982;16:728-31.
Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun. 2001 May;16(3):175-86.
Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005 Jan-Feb;15(1):17-27.
Fairweather D, Rose NR. Women and autoimmune disease. Emerg Infect Dis 2004;10:2005-2011.
Mcl Mowat A. Dendritic cells and immune responses to orally administered antigens. Vaccine 2005;23:1797-99.
Strobel S, Mowat MA. Oral tolerance and allergic responses to food proteins. Curr Opin Allergy Clin Immunol. 2006 Jun;6(3):207-13.
Benko S, Magyarics Z, Szabó A, Rajnavölgyi E. Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors. Biol Chem. 2008 May;389(5):469-85.
Progress in Autoimmune Disease Research. The Autoimmune Disease Coordinating Committee Report to Congress. U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases. Bethesda (MD), 2005. http://www3.niaid.nih.gov/topics/autoim ... CFinal.pdf
Lee S, Levin MC. Molecular mimicry in neurological disease: what is the evidence? Cell Mol Life Sci. 2008 Apr;65(7-8):1161-75.
Blank, M., Barzilai, O. and Shoenfeld, Y. (2007) Molecular mimicry and auto-immunity. Clin. Rev. Allergy Immunol. 32, 111–118.
Albert, L. J. and Inman, R. D. (1999) Molecular mimicry and autoimmunity. N. Engl.J. Med. 341, 2068–2074.
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688-93.
Arrieta MC, Bistritz L, Meddings JB.Alterations in intestinal permeability. Gut. 2006 Oct;55(10):1512-20.
Fasano A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am J Pathol. 2008 Nov;173(5):1243-52.
Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery: 4. Immunological consequences. Int J Pharm 1995;120:247-254.
De Aizpurua HJ, Russell-Jones GJ. Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med 1988;167:440-451.
Morrow WJ, Yang YW, Sheikh NA.Immunobiology of the Tomatine adjuvant. Vaccine. 2004 Jun 23;22(19):2380-4.
Yang YW, Wu CA, Morrow WJ.The apoptotic and necrotic effects of tomatine adjuvant. Vaccine. 2004 Jun 2;22(17-18):2316-27.
Yang YW, Sheikh NA, Morrow WJ.The ultrastructure of tomatine adjuvant. Biomaterials. 2002 Dec;23(23):4677-86.
Heal KG, Sheikh NA, Hollingdale MR, Morrow WJ, Taylor-Robinson AW. Potentiation by a novel alkaloid glycoside adjuvant of a protective cytotoxic T cell immune response specific for a preerythrocytic malaria vaccine candidate antigen.Vaccine. 2001 Jul 20;19(30):4153-61.
Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ.Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice.Vaccine. 1999 Aug 20;18(1-2):140-52.
Sheikh NA, Rajananthanan P, Attard GS, Morrow WJ.Generation of antigen specific CD8+ cytotoxic T cells following immunization with soluble protein formulated with novel glycoside adjuvants. Vaccine. 1999 Aug 6;17(23-24):2974-82.
Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ.Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses.Vaccine. 1999 Feb 26;17(7-8):715-30.
http://noarthritis.com/research.htm
Childers NF. Arthritis - Childer’s Diet to Stop It. Nightshades, Aging and Ill Health, 4th ed. Florida: Horticultural Publications, 1993.

Consumption of Nightshade Plants (Part 3) - by Loren Cordain, Ph.D., Professor

Editor's note: Dr. Cordain latest paper on paleo nutrition discusses the consumption of the nightshade family of plants (potatoes, tomatoes, and chili peppers). This is the final installment in the free weekly edition of The Paleo Diet Update. Parts 1 and 2 of this paper (as well as part 3 beginning June 21) are available for purchase in our web store until July 5, 2010. Afterwards, this paper will be available in its entirety from our web store. Note that the numbering of figures, tables and references in this week's installment reflect the paper in its entirety.

Consumption of Nightshade Plants, Human Health and Autoimmune Disease
Part 3: Chili Peppers

All chili peppers belong to the genus Capsicum (family Solanaceae) and are among the most heavily consumed spices throughout the world57. There are 22 wild species within the Capsicum genus, and five domesticated species58, of which more than 200 or more varieties have been produced depending upon various environmental factors to which the plants are exposed59. Table 6 shows the five domesticated species and lists a few of the more common varieties of chili peppers.

Botanically speaking, the fruit of capsicums are berries. However, the peppers are considered vegetables (e.g. bell peppers) or spices (e.g. cayenne pepper) for culinary purposes, based on factors including fleshiness and intensity of flavor.

Table 6. Some common names for the five domesticated species of the Capsicum genus.

Common name or names Scientific name
Bell pepper, Cayenne pepper, Cherry pepper, Chili pepper, Paprika, Jalapeno pepper, pimento, Serrano pepper Capsicum annuum
Aji, Brown’s Pepper, Peruvian pepper Capsicum baccatum
Habanero chili, Bonnet pepper Capsicum chinense
Tabasco pepper Capsicum frutescens
Rocoto pepper Capsicum pubescens
The sensory "heat" from chili peppers comes from a group of compounds called capsaicinoids. More than 20 capsaicinoids are found in chili peppers, and their concentrations range from 0% by weight to more than 2% by weight60. Daily per capita consumption of capsaicinoids from chili peppers in the U.S. and Europe is ~1.5 mg, whereas in India, Mexico and Thailand it is ~25-200 mg60. Chili peppers are favorite spices throughout the world because of their pungent or "hot" taste and aroma. So, the greater the concentration of capsaicinoids in the chili pepper, the "hotter" it tastes. Table 7 shows the concentrations of total capsaicinoids in a variety of chili peppers and chili pepper containing foods.

Table 7. Concentrations of total capsaicinoids in a variety of chili peppers and chili pepper containing foods (adapted from reference 60).

Pepper/food product Total Capsaicinoid Content (microgram/g)
McCormick ground cayenne pepper 3,588
Habanero pepper, fresh 2,261
Thai pepper, fresh 1333
McCormick original chili seasonings 830
McIlhenny hot habanero sauce 547
Hungarian hot paprika 439
La Costena Chipotle, whole, canned 416
McCormick hot taco seasoning 394
Mezzetta hot chili, canned 306
La Costena jalapeno green whole pickled canned 210
Lawry Choula hot sauce 201
McIlhenny Tabasco original hot sauce 195
McCormick mild taco seasoning 186
Lawry Crystal hot sauce, extra hot 174
La Costena seranno, green whole pickled canned 164
Star Foods pepperoncini canned 82
Serrano, fresh 77
Green jalapeno, fresh 76
Red jalapeno, fresh 46
Safeway hot pepper sauce 45
Mezzetta sliced jalapeno, canned 19
Green, red and yellow bell peppers, fresh 0
Roasted red canned 0
Roasted green canned 0
Whole canned peppers 0
Capsaicinoids seem to have both beneficial and deleterious health effects60, 61. They have long been used in Mayan and Ayurvedic therapeutic remedies62 and more recently have found therapeutic application in pain relief63.

One of the potential shortcomings of chili peppers is their ability to increase intestinal permeability64-69 - and this may be their greatest threat to human health. As far back as 1998 it was suggested that chili peppers - because of their capsaicinoids - "may modulate the absorption of low molecular weight food constituents that are involved in the pathogenesis of food allergy and intolerance" 69. More recently, many scientists now believe that increased intestinal permeability, often times called "leaky gut" represents a universal environmental triggering event for autoimmune diseases14, 15, 44, 45. As stated earlier, when the gut becomes "leaky" it is not a good thing, as the intestinal contents may then have access to the immune system (which in turn becomes activated), thereby causing a chronic low level systemic inflammation known as endotoxemia16 – 18 that may promote cardiovascular disease16, 17 and diseases of insulin resistance18. To date, this chain of physiological events (e.g. consumption of chili peppers increases intestinal permeability which increases low level inflammation, which increases the risk for disease) has not yet been demonstrated in living (in vivo) humans. As always, I believe that anyone suffering from an autoimmune disease should remove suspect foods from the diet for an extended period and then monitor symptoms. If conditions get worse after you re-introduce the food, then this particular food may be problematic for you and should not be part of your lifelong diet.

Summary

In the U.S. we consume almost 230 pounds of nightshades per person on a yearly basis. These common foods (potatoes, tomatoes, chili peppers, and eggplants) have become such staples in our diets that few people rarely - if ever - consider that they are very recent additions to worldwide human nutrition. In fact, prior to 1492 and Columbus’ "discovery" of the new world, no Europeans, Middle Easterners, Africans or Asians ever had access to these foods, as they are all indigenous to Central and South America. Hence, humanity as a whole has had very little evolutionary experience with foods that contain multiple toxins (saponins and lectins primarily), which cause numerous adverse health effects in humans and animals. For Paleo Dieters my advice would to be to eliminate or drastically reduce potato consumption and for autoimmune and allergy patients to be cautious with the consumption of tomatoes, chili peppers and eggplants.

References:

Heiser CB. Nightshades, the Paradoxical Plants. W.H. Freeman and Company, San Francisco, CA, 1969.
USDA, Economic Research Service. http://www.ers.usda.gov/
Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002 Jul;76(1):5-56.
Leeman M, Ostman E, Björck I. Glycaemic and satiating properties of potato products. Eur J Clin Nutr. 2008 Jan;62(1):87-95.
Fernandes G, Velangi A, Wolever TM. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005 Apr;105(4):557-62.
Henry CJ, Lightowler HJ, Strik CM, Storey M. Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr. 2005 Dec;94(6):917-21.
Cordain L, Eades MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comp Biochem Physiol A Mol Integr Physiol. 2003 Sep;136(1):95-112.
Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002 Dec;88(6):587-605.
Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B.. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995;1240: 216-228.
Smith DB, Roddick JG, Jones JL. Potato glycoalkaloids: some unanswered questions. Trends in Food Sci Technol 1996;7:126-131.
Patel B, Schutte R, Sporns P, Doyle J, Jewel L, Fedorak RN. Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. Inflamm Bowel Dis. 2002 Sep;8(5):340-6.
Iablokov V, Sydora BC, Foshaug R, Meddings J, Driedger D, Churchill T, Fedorak RN. Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease. Dig Dis Sci. 2010 Mar 3. [Epub ahead of print]
Hellenäs KE, Nyman A, Slanina P, Lööf L, Gabrielsson J. Determination of potato glycoalkaloids and their aglycone in blood serum by high-performance liquid chromatography. Application to pharmacokinetic studies in humans. J Chromatogr. 1992 Jan 3;573(1):69-78.
Fasano A. Surprises from celiac disease. Sci Am. 2009 Aug;301(2):54-61.
Cordain L, Toohey L, Smith MJ, Hickey MS. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br J Nutr. 2000 Mar;83(3):207-17.
Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des. 2006;12(32):4229-45.
Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet. 2000 Sep 9;356(9233):930-3.
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761-72.
Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol 1996;60: 8-26.
Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H, Uusitupa M, Poutanen K, Niskanen L. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr. 2008 May;87(5):1497-503.
Naruszewicz M, Zapolska-Downar D, Kośmider A, Nowicka G, Kozłowska-Wojciechowska M, Vikström AS, Törnqvist M. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009 Mar;89(3):773-7.
Gabor F, Stangl M, Wirth M. Lectin-mediated bioadhesion: binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8. J Control Release. 1998 Nov 13;55(2-3):131-42.
Qaddoumi M, Lee VH. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res. 2004 Jul;21(7):1160-6.
Pramod SN, Venkatesh YP, Mahesh PA. Potato lectin activates basophils and mast cells of atopic subjects by its interaction with core chitobiose of cell-bound non-specific immunoglobulin E. Clin Exp Immunol. 2007 Jun;148(3):391-401.
Johnson IT, Gee JM, Price K, Curl C, Fenwick GR. Influence of saponins on gut permeability and active nutrient transport in vitro. J Nutr. 1986 Nov;116(11):2270-7.
Friedman M, Levin CE. Alpha tomatine content in tomato and tomato products determined by HPLC with pulsed amperometric detection. J Agric Food Chem 1995;43:1507-1511.
Gee JM, Wortley GM, Johnson It, Price KR, Rutten AA. Houben GF, Penninks, AJ. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations. Toxicol in Vitro 1996;10:117-128.
Kilpatrick DC, Pusztai A, Grant G, Graham C, Ewen SW. Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 1985 Jun 17;185(2):299-305.
Nachbar MS, Oppenheim JD, Thomas JO. Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomoto (Lycopersicon esculentum). J Biol Chem 1980;2056-2061.
Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004 Mar 3;56(4):425-35.
Carreno-Gómez B, Woodley JF, Florence AT. Studies on the uptake of tomato lectin nanoparticles in everted gut sacs. Int J Pharm. 1999 Jun 10;183(1):7-11.
Alvarez JR, Torres-Pinedo R. Interactions of soybean lectin, soyasaponins, and glycinin with rabbit jejunal mucosa in vitro. Pediatr Res 1982;16:728-31.
Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun. 2001 May;16(3):175-86.
Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005 Jan-Feb;15(1):17-27.
Fairweather D, Rose NR. Women and autoimmune disease. Emerg Infect Dis 2004;10:2005-2011.
Mcl Mowat A. Dendritic cells and immune responses to orally administered antigens. Vaccine 2005;23:1797-99.
Strobel S, Mowat MA. Oral tolerance and allergic responses to food proteins. Curr Opin Allergy Clin Immunol. 2006 Jun;6(3):207-13.
Benko S, Magyarics Z, Szabó A, Rajnavölgyi E. Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors. Biol Chem. 2008 May;389(5):469-85.
Progress in Autoimmune Disease Research. The Autoimmune Disease Coordinating Committee Report to Congress. U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases. Bethesda (MD), 2005. http://www3.niaid.nih.gov/topics/autoim ... CFinal.pdf
Lee S, Levin MC. Molecular mimicry in neurological disease: what is the evidence? Cell Mol Life Sci. 2008 Apr;65(7-8):1161-75.
Blank, M., Barzilai, O. and Shoenfeld, Y. (2007) Molecular mimicry and auto-immunity. Clin. Rev. Allergy Immunol. 32, 111–118.
Albert, L. J. and Inman, R. D. (1999) Molecular mimicry and autoimmunity. N. Engl.J. Med. 341, 2068–2074.
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688-93.
Arrieta MC, Bistritz L, Meddings JB.Alterations in intestinal permeability. Gut. 2006 Oct;55(10):1512-20.
Fasano A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am J Pathol. 2008 Nov;173(5):1243-52.
Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery: 4. Immunological consequences. Int J Pharm 1995;120:247-254.
De Aizpurua HJ, Russell-Jones GJ. Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med 1988;167:440-451.
Morrow WJ, Yang YW, Sheikh NA.Immunobiology of the Tomatine adjuvant. Vaccine. 2004 Jun 23;22(19):2380-4.
Yang YW, Wu CA, Morrow WJ.The apoptotic and necrotic effects of tomatine adjuvant. Vaccine. 2004 Jun 2;22(17-18):2316-27.
Yang YW, Sheikh NA, Morrow WJ.The ultrastructure of tomatine adjuvant. Biomaterials. 2002 Dec;23(23):4677-86.
Heal KG, Sheikh NA, Hollingdale MR, Morrow WJ, Taylor-Robinson AW. Potentiation by a novel alkaloid glycoside adjuvant of a protective cytotoxic T cell immune response specific for a preerythrocytic malaria vaccine candidate antigen.Vaccine. 2001 Jul 20;19(30):4153-61.
Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ.Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice.Vaccine. 1999 Aug 20;18(1-2):140-52.
Sheikh NA, Rajananthanan P, Attard GS, Morrow WJ.Generation of antigen specific CD8+ cytotoxic T cells following immunization with soluble protein formulated with novel glycoside adjuvants. Vaccine. 1999 Aug 6;17(23-24):2974-82.
Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ.Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses.Vaccine. 1999 Feb 26;17(7-8):715-30.
http://noarthritis.com/research.htm
Childers NF. Arthritis - Childer’s Diet to Stop It. Nightshades, Aging and Ill Health, 4th ed. Florida: Horticultural Publications, 1993.
Govindarajan VS, Sathyanarayana MN.Capsicum--production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit Rev Food Sci Nutr. 1991;29(6):435-74.
Bosland PW. Chiles: history, cultivation, and uses. In: Charalambous G (Ed.), Spices, Herbs and Edible Fungi (Herbs). Elsevier Science Publishers, Amsterdam, 1994, pp. 347-366.
Pruthi JS. Spices and Condiments. In: Chichester EM, Stewart GF (Eds), Academic Press, New York, 1980;p. 13.
Kozukue N, Han JS, Kozukue E, Lee SJ, Kim JA, Lee KR, Levin CE, Friedman M. Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Agric Food Chem. 2005 Nov 16;53(23):9172-81.
Surh YJ, Lee SS. Capsaicin in hot chili pepper: carcinogen, co-carcinogen or anticarcinogen? Fd Chem Toxic 1996;34:313-316.
Thapa B, Skalko-Basnet N, Takano A, Masuda K, Basnet P. High-performance liquid chromatography analysis of capsaicin content in 16 Capsicum fruits from Nepal. J Med Food 2009;12:908-913.
Sasamura T, Kuraishi Y. Peripheral and central actions of capsaicin and VR1 receptor. Jpn J Pharmacol 1999;80:275-280.
Isoda H, Han J, Tominaga M, Maekawa T. Effects of capsaicin on human intestinal cell line Caco-2. Cytotechnology. 2001 Jul;36(1-3):155-61.
Han J, Isoda H, Maekawa T. Analysis of the mechanism of the tight-junctional permeability increase by capsaicin treatment on the intestinal Caco-2 cells. Cytotechnology. 2002 Nov;40(1-3):93-8.
Han JK, Akutsu M, Talorete TP, Maekawa T, Tanaka T, Isoda H. Capsaicin-enhanced Ribosomal Protein P2 Expression in Human Intestinal Caco-2 Cells. Cytotechnology. 2005 Jan;47(1-3):89-96.
Komori Y, Aiba T, Nakai C, Sugiyama R, Kawasaki H, Kurosaki Y. Capsaicin-induced increase of intestinal cefazolin absorption in rats. Drug Metab Pharmacokinet. 2007 Dec;22(6):445-9.
Tsukura Y, Mori M, Hirotani Y, Ikeda K, Amano F, Kato R, Ijiri Y, Tanaka K. Effects of capsaicin on cellular damage and monolayer permeability in human intestinal Caco-2 cells. Biol Pharm Bull. 2007 Oct;30(10):1982-6.
Jensen-Jarolim E, Gajdzik L, Haberl I, Kraft D, Scheiner O, Graf J. Hot spices influence permeability of human intestinal epithelial monolayers. J Nutr. 1998 Mar;128(3):577-81.

La medicina ha fatto così tanti progressi che ormai più nessuno è sano. Huxley | La persona intelligente è quella, e solo quella, che riesce a mettere insieme più aspetti della realtà ed è capace di trovare tra di essi una correlazione. C.Malanga


   
RispondiCitazione
 Muso
(@muso)
Membro
Registrato: 13 anni fa
Post: 1170
 

è ovvio, deve stare al passo con la evo diet di cianti, altrimenti non la vince la sfida di chi esclude più alimenti per arrivare alle origini del cibo...
Ormai sembra che chi più esclude stia suggerendo la dieta migliore, anche cianti: no evo, no frutta...Il prossimo passo sarà quello di mangiare solo cose che si sono riuscite a cacciare personalmente, ma lontano dai centri abitati perchè magari un ratto potrebbe aver mangiato un avanzo di pasta buttato nel pattume.
Poi ovviamente verrà venduto il "compedio di caccia e pesca", si terranno seminari(a pagamento) sull'uso di arco e frecce, ci saranno le vacanze digiuno per simulare lo stato di carestia(costosissime) e altre cose così


   
RispondiCitazione
Tropico
(@tropico)
Membro Admin
Registrato: 13 anni fa
Post: 9900
 

A proposito di Cianti..ricordo di aver letto da qualche parte che un tizio a regime evo diet dopo due anni di privazione di cereali non riusciva più a digerirli se provava a mangiarli.
Cosa ovvia, la flora intestinale non ha la capacità di trattare più quel cibo,e bisogna reintrodurlo molto graduatamente, su Rai3 una nutrizionista diceva proprio queste cose pochi giorni fa.
Chi non è abituato a mangiare legumi e cereali se lo fa di colpo sta male,perchè la sua flora batterica non è pronta.
Insomma trattasi di svezzamento.

La medicina ha fatto così tanti progressi che ormai più nessuno è sano. Huxley | La persona intelligente è quella, e solo quella, che riesce a mettere insieme più aspetti della realtà ed è capace di trovare tra di essi una correlazione. C.Malanga


   
RispondiCitazione
(@andrea)
Membro
Registrato: 13 anni fa
Post: 708
Topic starter  

si ricordo la storia della patate..comunque ora come ora preferisco di gran lunga un piatto di riso..secondo me bisogna avere buon senso..fino all'altro giorno abbiamo mangiato di tutto senza sapere cos'era e adesso ci tiriamo le menate per un po di patate o di riso..


   
RispondiCitazione
fabio meloni
(@fabietto)
Membro
Registrato: 13 anni fa
Post: 7422
 

OT: Io il riso lo vedo come cibo da ospedale: quando ero piccolo mi avevano ricoverato e me lo avevano fatto schifare! Non lo mangio più da quando avevo 5 anni e vivo bene uguale! Mi ricordo, quando facevamo i festini a scuola, i miei compagni ce la finivano sempre che preparavano un'insalata di riso, maionese e sottaceti...... Questo intruglio metteva tutti d'accordo tranne io..... bleah che schifus
Le patate una volta a settimana le mangio e non me ne privo: mi piacciono molto e problemi, almeno apparentemente, non me ne creano....specialmente cotte a vapore e condite con olio d'oliva e cipolla

La forma è anche sostanza. Chi veicola un messaggio non può essere estraneo al suo contenuto. Tropico - Chi è musone e triste non riesce a tener lontano la malattia. Tonegawa - Le testimonianze vere di gente normale valgono più di tante elucubrazioni teoriche. Francesca F.C.


   
RispondiCitazione
(@margjie)
Membro
Registrato: 13 anni fa
Post: 60
 

si, ortoressia è.....la mia sicuramente....ma da quando ho iniziato con la paleo escludendo carbo complessi e latticini, la mia stitichezza è scomparsa, e come reintroduco cereali...riappare, insieme alla pesantezza di stomaco...anche se integrali...anche se in piccole quantità (50 gr)..
di fronte all'oggettività dei fatti, parlereste ugualmente di ortoressia???


   
RispondiCitazione
gianlnicc
(@gianlnicc)
Membro
Registrato: 13 anni fa
Post: 686
 

Salve,
mi inserisco nel thread per una precisazione.
Sono passato da 85kg a 95kg ma non senza grasso, anzi.
Complici anche i numerosi sgarri.
Comunque quando io ho escluso il riso integrale e ho iniziato una warrior-paleo con predominanza di verdura e carne+pesce il cambiamento l'ho avvertito al bagno eccome...
all'inizio una liquidità senza precedenti (ma dicono sia normale)
poi mi sono stabilizzato
quando ero macrobiotico ero più regolare di un orlogio svizzero ed era una soddisfazione...anche la consistenza...
ora non è più così!

ma forse dovrei analizzare più in prodondità quanto fatto.

Io sono quel che sono e questo è tutto quel che sono

Popeye the sailor man


   
RispondiCitazione
fabio meloni
(@fabietto)
Membro
Registrato: 13 anni fa
Post: 7422
 

Io praticamente sono in "low carbo" (o almeno una cosa che gli assomiglia) da ottobre dell'anno scorso. Tra nuova alimentazione e ripresa degli allenamenti dopo la frattura al polso e dieta senza muco :face:, ho messo su circa 5 kg fat free; e al bagno sono sempre regolare. Siccome a mia moglie troppo bombato non gli piaccio ho deciso di allenarmi per mantenere la massa che ho ottenuto. Quindi non so se, impegnandomi di più, con questo tipo di alimentazione potrei aumentare ancora di molto senza accumulare grasso. Conosco questo ragazzo che frequenta un forum di culturismo natural che seguo....si chiama Roberto Amorosi Hernandez. quì video collage dei suoi progressi http://www.youtube.com/watch?gl=ES&hl=es&v=I-0nA0QDkqY
http://www.youtube.com/watch?v=TYShy_iZHws
Questo ragazzo è in paleo e si allena con il biio e dichiara di essere natural! Secondo me, se è tutto vero, il suo corpo ha reagito parecchio bene a tutto ciò...... giudicate Voi!

La forma è anche sostanza. Chi veicola un messaggio non può essere estraneo al suo contenuto. Tropico - Chi è musone e triste non riesce a tener lontano la malattia. Tonegawa - Le testimonianze vere di gente normale valgono più di tante elucubrazioni teoriche. Francesca F.C.


   
RispondiCitazione
Tropico
(@tropico)
Membro Admin
Registrato: 13 anni fa
Post: 9900
 

Conosco bene Amorosi, diciamo che la paleo non la segue da tantissimo tempo, lo sviluppo di massa più grande lo ha fatto seguendo la dieta a zona,e poi dieta a zona modificata sennò non riusciva a introdurre il fabbisogno calorico prefissato. In alcuni post affermava candidamente che quando era in massa mangiava anche junk food (McDonald).
Ho visto che ha fatto anche cicli di iperalimentazione seguita da digiuno.
Sicuramente non è dopato, anzi ne fa una battaglia personale contro il doping, come il suo maestro Tozzi del BIIO.
Io personalmente sono contro la fase di massa e mangiare oltre il dovuto.
Sono più favorevole a mangiare in proporzione al consumo, se ti alleni di più allora mangi di più, un pò alla Ciampolini maniera.

La medicina ha fatto così tanti progressi che ormai più nessuno è sano. Huxley | La persona intelligente è quella, e solo quella, che riesce a mettere insieme più aspetti della realtà ed è capace di trovare tra di essi una correlazione. C.Malanga


   
RispondiCitazione
OneLovePeace
(@onelovepeace)
Membro
Registrato: 13 anni fa
Post: 1347
 

Spaventoso questo Roberto Amorosi, non ne avevo mai sentito
parlare!

Tropico ha scritto:Io personalmente sono contro la fase di
massa e mangiare oltre il dovuto.
Sono più favorevole a mangiare in
proporzione al consumo, se ti alleni di più allora mangi di più, un pò alla
Ciampolini maniera.

La penso esattamente come te.


La natura non fa nulla di inutile.


   
RispondiCitazione
Tropico
(@tropico)
Membro Admin
Registrato: 13 anni fa
Post: 9900
 

Si è un talento Amorosi,ma... quando ha iniziato il BIIO faceva già palestra da anni. La base se l'è costruita con altro.
Ci tengo a precisarlo, perchè ho avuto un diverbio nel forum del BIIO.
Fanno pubblicità ingannevole, ci sono dei tizi che per una vita fanno altro sport o altro tipo di allenamento,sono già molto grossi. Poi magari fanno un anno di BIIO,e Tozzi li sprona a mettere le loro foto su facebook.
Ma quel fisico non è merito del BIIO di un solo anno, e anzi, mi sono accorto che chi inizia da zero col BIIO rimane piccolo in massa muscolare.
Ho il dente avvelenato col BIIO perchè con tutto quel marketing hanno iniziato a barare.

La medicina ha fatto così tanti progressi che ormai più nessuno è sano. Huxley | La persona intelligente è quella, e solo quella, che riesce a mettere insieme più aspetti della realtà ed è capace di trovare tra di essi una correlazione. C.Malanga


   
RispondiCitazione
(@andrea)
Membro
Registrato: 13 anni fa
Post: 708
Topic starter  

Fabietto no!!!! hai postato il video di Amorosi senza l'audio!! senza musica non rende come dovrebbe
questo è con l ' audio:
http://www.metacafe.com/watch/1960156/roberto_natural_bodybuilding_b_i_i_o_part_iv/

poi per quanto riguarda il suo fisico attuale non lo deve di certo alla paleo ma ad una zona ipercalorica con sgarri annessi

su un forum scrisse qual'era e qual'è stato il suo approccio alimentare:

Quando lessi per la prima volta i libri di Barry Sears rimasi entusiasta. La mia dedicazione era maniacale pesavo TUTTO grammo x grammo.
Mah.... presto sono reso conto che se volevo crescere, seppur facendo il BIIO, dovevo mangiare qualcosina di piú. Fin dall'inizio avevo doppiato l'assunzione dei grassi come cosnigliava il Buon Barry per gli atleti di forza:

Cominciai con 2 gr x Kg di MM e nulla
passai a 2,2 kg .. . poco o quasi nulla
passai a 2,5 kg .. e finalmente cominciai a crescere..

Nel tempo ho sperimentato molti aggiustamenti nella dieta arrivando anche a 3,5 gr x kg di MM

Evidentemente con queste quantitá di alimento é praticamente Impossibile estrarre Tutti i carboidrati dalla verdura cosi che dividevo 1/3 della quota di Carbo procedente dalla Frutta, 1/3 dalla verdura ed 1/3 dai cereali. (quindi poi una "Zona" un bel pó modificata).

Naturalmente i passaggi sono SEMPRE stati molto progressivi e controllando il feedback sul tessuto adiposo

Durante gli ultimi anni peró ho optato per fare una grande ricarica nei giorni di allenamento e magari 1 o 2 giorni dopo per tornare poi a quantitativi calorici piú "Normali" tipo 2,2 gr x Kg di MM (che per me é una quota di Mantenimento).

Quest' ultimo approccio molto piú "a Fame" é quello che ho fatto negli ultimi anni e che (personalmente) mi risulta migliore. Naturalmente cé bisogno di sviluppare una sensibilitá per capire quando é il momento di CARICARE come un animale o quando é meglio mangiare una insalatina di tonno con una meletta..

Quando lessi per la prima volta i libri di Barry Sears rimasi entusiasta. La mia dedicazione era maniacale pesavo TUTTO grammo x grammo.
Mah.... presto sono reso conto che se volevo crescere, seppur facendo il BIIO, dovevo mangiare qualcosina di piú. Fin dall'inizio avevo doppiato l'assunzione dei grassi come cosnigliava il Buon Barry per gli atleti di forza:

Cominciai con 2 gr x Kg di MM e nulla
passai a 2,2 kg .. . poco o quasi nulla
passai a 2,5 kg .. e finalmente cominciai a crescere..

Nel tempo ho sperimentato molti aggiustamenti nella dieta arrivando anche a 3,5 gr x kg di MM

Evidentemente con queste quantitá di alimento é praticamente Impossibile estrarre Tutti i carboidrati dalla verdura cosi che dividevo 1/3 della quota di Carbo procedente dalla Frutta, 1/3 dalla verdura ed 1/3 dai cereali. (quindi poi una "Zona" un bel pó modificata).

Naturalmente i passaggi sono SEMPRE stati molto progressivi e controllando il feedback sul tessuto adiposo

Durante gli ultimi anni peró ho optato per fare una grande ricarica nei giorni di allenamento e magari 1 o 2 giorni dopo per tornare poi a quantitativi calorici piú "Normali" tipo 2,2 gr x Kg di MM (che per me é una quota di Mantenimento).

Quest' ultimo approccio molto piú "a Fame" é quello che ho fatto negli ultimi anni e che (personalmente) mi risulta migliore. Naturalmente cé bisogno di sviluppare una sensibilitá per capire quando é il momento di CARICARE come un animale o quando é meglio mangiare una insalatina di tonno con una meletta..

e ancora:

La quota di Grassi suggerita da Sears per gli atleti di forza dovrebbe essere Raddoppiata (per lo meno nelle traduzioni spagnole che spero non siano state boicottate "da qualche industria del burro di arachidi").

Al dirti la veritá dopo un periodo in cui pesavo i grassi ho addirittura Smesso di pesarli.. ne mangiavo a piu non posso, cosa che ripeto normalmente in fase di volume. Naturalmente lo faccio perche il mio profilo ematico é sempre sotto ai minimi sia di colesterolo che di trigliceridi. Non consiglierei di farlo ad una persona che magari ha come priortá ridurre il grasso (anche se poi sappiamo che i grassi non sono affatto negativi per il dimagrimento).

Per quanto riguarda le verdure cerco sempre di mangiarne molte per alcalinizzare la dieta. Poi per raggiungere la cuota di carboidrati "mi ammazzo" di BANANE!! ..dato che sono molto piu facili e pratiche da ingerire. Ultimamente sto anche provando con l'uva passa che é tra i frutti piú alcalini in assoluto e devo dire che si riesce a caricare bene senza acidificare la dieta con il classico Riso e/o MASSGAINER in commercio. E' evidente che dei picchi insulinici controllati sono necessari per aumentare di massa soprattutto in soggetti tendenzialmente magri.

e poi:

Effettivamente mangio moltissimi grassi, evidentemente "buoni"(Monoinsaturi e Polinsaturi). devo aggiungere peró che nel post workout dipendendo dalla "fame" faccio una Mega Ricarica per l'appunto "a fame".

Per i carboidrati sono Normalmente intorno alle 300-400 come hai suggerito tu.. calcolando 2,5 gr di Prot x Kg pesando sui 100kg e calcolando il 40% di carboidrati, arriviamo sui 333 gr al giorno!

Effettivamente mangio moltissimi grassi, evidentemente "buoni"(Monoinsaturi e Polinsaturi). devo aggiungere peró che nel post workout dipendendo dalla "fame" faccio una Mega Ricarica per l'appunto "a fame".

Per i carboidrati sono Normalmente intorno alle 300-400 come hai suggerito tu.. calcolando 2,5 gr di Prot x Kg pesando sui 100kg e calcolando il 40% di carboidrati, arriviamo sui 333 gr al giorno!

e qui invece si vede che aveva cominciato la paleo:

In alcuni casi ho allargato la ricarica anche 1 o 2 giorni dopo l'allenamento a seconda del grado di spossatezza e DOMS che percepivo. Io ti consiglierei di fare qualche prova. Comunque dato che nella tua dieta ci sono SEMPRE riso, pane, pasta, etc. Forse non hai bisogno di ricaricare troppo.

Io lo faccio questo perche normalmente mangio solo frutta e verdura como fonte di CARBOIDRATI

fonte: http://www.bodybuilding.it/topic,BIIO+-+My+BiioSystem+Lifestyle+Revolution+Experience,21476,0,pag1.html


   
RispondiCitazione
gianlnicc
(@gianlnicc)
Membro
Registrato: 13 anni fa
Post: 686
 

Concordo appieno Tropico.
BIIO a me è servito solo per scoprire altro, cioè il power lifting e la scienza della periodizzazione.

Io sono quel che sono e questo è tutto quel che sono

Popeye the sailor man


   
RispondiCitazione
gianlnicc
(@gianlnicc)
Membro
Registrato: 13 anni fa
Post: 686
 

la mia dieta attuale è la seguente

colazione
tè verde + 23 frutti

pranzo

12 tazze grandi di zuppa di verdure miste con miso

verdure grigliate o passate in padella (evo sempre e senza lesinare)

insalata a volte con aggiunta mandorle

23 voolte a settimana un uovo sodo ma non troppo
12 volte a settimana 2030g riso integrale

merenda

2 mele

cena

carne (tacchinopollo o manzo) o pesce o formaggio o insaccati di fegato
verdure cotte
insalata

Non peso niente.
Purtoppo i fine settimana e alcune volte infrasettimana ci sono sgarri, altrimenti è una dieta intuitivissima.

Mi alleno 5 volte a settimana senza alcuna ricarica ne pre ne post, ultimamente ho sperimentato un caffé pre ma non sento molta differenza.

ultimamente sto sperimentando con l'acido ascorbico e devo dire che una fastidiosa bronchite che mi portavo dietro da molto sembra misteriosamente scomparsa.
sono arrivato a 6g ma a causa di disturbi intestinali sono tornato a 3g al giorno.
tutto questo da circa 3 settimane con dosi a crescere partendo da 150mg.

Io sono quel che sono e questo è tutto quel che sono

Popeye the sailor man


   
RispondiCitazione
(@andrea)
Membro
Registrato: 13 anni fa
Post: 708
Topic starter  

a vedere mi sembra ipocalorica..quanto pesi ora?


   
RispondiCitazione
Pagina 2 / 5